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Abstract. We discuss electron–electron contact-interaction searches in the processes e+e− → e+e− and
e−e− → e−e− at planned Linear Colliders run in the e+e− and e−e− modes with both beams longitudinally
polarized. Our analysis is based on the measurement, for the two processes, of polarized differential cross
sections, and allows one to simultaneously take into account the general set of electron contact-interaction
couplings as independent, non-zero, parameters thus avoiding the simplifying choice of a model. We evaluate
the corresponding model-independent constraints on the contact coupling constants, emphasizing the role
of the available beam polarization and the complementarity, as far as the chirality of the constants is
concerned, of the two processes in giving the best constraints.

1 Introduction

Contact-interaction (CI) Lagrangians provide a frame-
work to account for the phenomenological effects of non-
standard dynamics characterized by extremely large in-
trinsic mass scales Λ, at the “low” energies

√
s � Λ at-

tainable at current particle accelerators. One of the his-
torical motivations for considering such a framework is
the fact that “low energy” manifestations of quark and
lepton substructure would occur via four-fermion quark
and lepton contact interactions, induced by exchanges of
quite heavy sub-constituent bound states with mass of
the order of Λ. Indeed, in the spirit of the “effective inter-
actions”, this concept can be used more generally, to pa-
rameterize non-standard, very heavy particle exchanges in
reactions among quarks and leptons, in the form of “low
energy” expansions of the relevant amplitudes at the lead-
ing order in

√
s/Λ. Since the above mentioned exchanged

heavy particles, with mass M � MW,Z , could not be
directly produced at the collider energy

√
s, the under-

lying non-standard dynamics could experimentally man-
ifest itself only indirectly, by deviations of the measured
observables from the standard model (SM) predictions. If
such deviations were effectively observed to a given sig-
nificance level, one could try to gain numerical informa-
tion on the parameters (masses and coupling constants)
of non-standard models and, eventually, select the viable
ones [1,2]. In the case where, instead, no deviation from
the SM predictions is observed within the experimental
accuracy, one can set numerical bounds or constraints on
the parameters characterizing the new interactions, and
determine the discovery reach of planned high energy col-

liders. Clearly, also this kind of information should be phe-
nomenologically useful in model applications.

The explicit form of the contact-interaction Lagrangian
depends on the kind of external particles participating in
the considered reaction. For the Bhabha scattering process
of interest here:

e+ + e− → e+ + e−, (1)

as well as for Møller scattering:

e− + e− → e− + e−, (2)

we consider the four-fermion contact-interaction Lagran-
gian [3]

LCI =
1

1 + δef

∑
i,j

g2
eff εij (ēiγµei)

(
f̄jγ

µfj

)
. (3)

In (3) i, j = L, R denote left- or right-handed fermion
helicities, δef = 1 for processes (1) and (2), and the same
Lagrangian, with δef = 0, is relevant to the annihilation
processes

e+ + e− → l+ + l−, (4)

with l = µ, τ . The CI coupling constants in (3) are pa-
rameterized in terms of the corresponding mass scales by
εij = ηij/Λ2

ij and, according to the previous remarks con-
cerning compositeness, one assumes g2

eff = 4π. Also, by
convention, one takes |ηij | = 1 or ηij = 0, leaving the en-
ergy scales Λij as free, a priori independent, parameters.
The explicit SU(3)×SU(2)×U(1) symmetry of the helic-
ity conserving four-fermion lepton contact interaction (3)
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reflects that the new dynamics are active well-beyond the
electroweak scale. Furthermore, (3) represents the lowest-
dimensional operator, D = 6 being the minimum, and
higher-dimensional operators, suppressed by higher pow-
ers of s/Λ2, are supposed to be negligible.

As anticipated, we will study the effects of the interac-
tion (3) in processes (1) and (2) at an e+e− Linear Collider
with c.m. energy

√
s = 0.5 TeV and polarized electron

and positron beams [4,5]. Indeed, the possibility of study-
ing e−e− initiated processes, in particular new physics, at
such a facility by turning the positron beam into an elec-
tron one, has been recently considered with interest [6].
Therefore, it should be useful to evaluate, and compare,
the sensitivities to the CI coupling constants that can be
obtained from the measurements of processes (1) and (2).

Clearly, from current lower bounds on Λs obtained at
LEP [7,8], of the order of 10–15 TeV depending on the
specific models chosen to fit the data, we can assume s �
Λ2, so that the relative size of the deviations from the SM
induced by (3) is expected to be of order s/αΛ2, with α the
SM coupling (essentially, the fine structure constant), and
therefore it is expected to be quite small1. Consequently,
very high collider energies and luminosities are required
to attain a significant sensitivity on these effects.

We notice that for the case of the Bhabha process (1),
(3) envisages the existence of six independent CI mod-
els, each one contributing to individual helicity ampli-
tudes or combinations of them, with a priori free, and
non-vanishing, coefficients (basically, εLL, εRR and εLR =
εRL combined with the ± signs). The same is true for
the Møller process (2)2. Correspondingly, in principle, a
model-independent analysis of the data should account for
the situation where the full equation (3) is included in the
expression for the cross section. Potentially, in this case,
the different CI couplings may interfere and such inter-
ference could substantially weaken the bounds because,
although the different helicity amplitudes by themselves
do not interfere, the deviations from the SM could be
positive for one helicity amplitude and negative for an-
other, so that accidental cancellations might occur in the
sought for deviations of the relevant observables from the
SM predictions.

The analysis of processes (1) and (2) proposed here
relies on the initial beams longitudinal polarization envis-
aged at the planned Linear Colliders. The polarization can
be exploited to extract the values of the individual helicity
cross sections from suitable combinations of measurable
polarized cross sections and, consequently, to disentangle
the effects of the corresponding CI constants εij ; see, e.g.,
[11]. Therefore, all CI couplings of (3) are simultaneously
included as independent, non-vanishing, free parameters
and, yet, separate constraints (or exclusion regions) on
their values can be obtained, free from potential weaken-

1 For bounds from different kinds of processes, in particular
on contact couplings to quarks, see, e.g., [9,10]

2 In general, apart from the ± possibility, for e+e− → f̄f
with f �= e there are four independent CI couplings, so that
in the present case of processes (1) and (2) there is one free
parameter less

ing due to accidental cancellations. In this sense, the pro-
cedure should be considered as model independent. We
will also make a comparison of the results with those ob-
tained from the simplest, model-dependent, procedure of
assuming non-zero values for only one of the couplings
(or one specific combination of them) at a time, with all
others set to zero.

Specifically, in Sect. 2 we introduce the polarized ob-
servables for the Bhabha and the Møller processes, (1) and
(2), and discuss the sensitivities of the different angular
ranges to the CI couplings in the two cases. In Sect. 3 we
perform the numerical analysis, based on a χ2 procedure,
to derive the constraints on the CI couplings and establish
the attainable reach on the mass scales Λij as a function
of the integrated luminosity. Section 4 contains some con-
clusive remarks, in particular a comparison of the results
from the two processes.

2 Polarized observables

2.1 Bhabha scattering

With P− and P+ the longitudinal polarization of the elec-
tron and positron beams, respectively, and θ the angle be-
tween the incoming and the outgoing electrons in the c.m.
frame, the differential cross section of process (1) at lowest
order, including γ and Z exchanges both in the s and t
channels and the contact interaction (3), can be written
in the following form [12–16]:

dσ(P−, P+)
d cos θ

=
(1 + P−) (1 − P+)

4
dσR

d cos θ

+
(1 − P−) (1 + P+)

4
dσL

d cos θ

+
(1 + P−)(1 + P+)

4
dσRL,t

d cos θ

+
(1 − P−)(1 − P+)

4
dσLR,t

d cos θ
. (5)

In (5):

dσL

d cos θ
=

dσLL

d cos θ
+

dσLR,s

d cos θ
,

dσR

d cos θ
=

dσRR

d cos θ
+

dσRL,s

d cos θ
, (6)

with

dσLL

d cos θ
=

2πα2

s

∣∣ALL
∣∣2,

dσRR

d cos θ
=

2πα2

s

∣∣ARR
∣∣2,

dσLR,t

d cos θ
=

dσRL,t

d cos θ
=

2πα2

s

∣∣ALR,t

∣∣2,
dσLR,s

d cos θ
=

dσRL,s

d cos θ
=

2πα2

s

∣∣ALR,s

∣∣2, (7)

and

ARR =
u

s

[
1 +

s

t
+ g2

R

(
χZ(s) +

s

t
χZ(t)

)
+ 2

s

α
εRR

]
,
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ALL =
u

s

[
1 +

s

t
+ g2

L

(
χZ(s) +

s

t
χZ(t)

)
+ 2

s

α
εLL

]
,

ALR,s =
t

s

[
1 + gR gL χZ(s) +

s

α
εLR

]
,

ALR,t =
s

t

[
1 + gR gLχZ(t) +

t

α
εLR

]
. (8)

Here α is the fine structure constant; t = −s(1 − cos θ)/2,
u = −s(1 + cos θ)/2 and χZ(s) = s/(s − M2

Z + iMZΓZ)
and χZ(t) = t/(t − M2

Z) represent the Z propagator in
the s and t channels, respectively, with MZ and ΓZ the
mass and width of the Z; gR = tan θW, gL = − cot 2 θW
are the SM right- and left-handed electron couplings of
the Z, with θW the electroweak mixing angle. Further-
more, notice that P− (P+) are the degrees of initial e−
(e+) longitudinal polarization, each one oriented along the
respective momentum, and we are using the right-handed
helicity basis so that, for example, P−, P+ = −1 indicates
“pure” (100%) left-handed e− and e+.

With both beams polarized, the polarization of each
beam can be changed on a pulse by pulse basis. This would
allow the separate measurement of the polarized cross sec-
tions to be made for each of the three polarization con-
figurations ++, +− and −+, corresponding to the sets of
beam polarizations (P−, P+) = (P1, P2), (P1, −P2) and
(−P1, P2), respectively, with P1,2 > 0. Specifically, from
(5), with the simplifying notation dσ ≡ dσ/d cos θ:

dσ++ =
(1 + P1)(1 − P2)

4
dσR

+
(1 − P1)(1 + P2)

4
dσL +

1 + P1P2

2
dσLR,t,

dσ+− =
(1 + P1)(1 + P2)

4
dσR

+
(1 − P1)(1 − P2)

4
dσL +

1 − P1P2

2
dσLR,t,

dσ−+ =
(1 − P1)(1 − P2)

4
dσR (9)

+
(1 + P1)(1 + P2)

4
dσL +

1 − P1P2

2
dσLR,t.

To extract from the measured polarized cross sections the
values of dσR, dσL and dσLR,t, that carry the information
on the CI couplings, one has to invert the system of (9).
The solution reads

dσR =
(1 + P2)2

2P2(P1 + P2)
dσ+− +

(1 − P1)2

2P1(P1 + P2)
dσ−+

− 1 − P1P2

2P1P2
dσ++,

dσL =
(1 − P2)2

2P2(P1 + P2)
dσ+− +

(1 + P1)2

2P1(P1 + P2)
dσ−+

− 1 − P1P2

2P1P2
dσ++,

dσLR,t = − 1 − P 2
2

2P2(P1 + P2)
dσ+− − 1 − P 2

1

2P1(P1 + P2)
dσ−+

+
1 + P1P2

2P1P2
dσ++. (10)

As one can see from (6)–(8), σLR,t depends on a single
contact-interaction parameter (εLR), while σR and σL de-
pend on pairs of parameters, (εRR, εLR) and (εLL, εLR),
respectively. Therefore, the derivation of the model-in-
dependent constraints on the CI couplings requires the
combination of all polarized cross sections as in (10). In
this regard, to emphasize the role of polarization, one can
easily notice from (5)–(8) that in the unpolarized case
P1 = P2 = 0, the interference of the εLR term with the
SM amplitude in ALR,s and ALR,t has opposite signs, lead-
ing to a partial cancellation for −t ∼ s. From the explicit
expression of t given below (8), such a cancellation occurs
in the region of large scattering angle θ. Consequently, as
briefly anticipated in Sect. 1, one can expect the unpo-
larized cross section to have reduced sensitivity to εLR.
Conversely, εLR is directly accessible from dσLR,t, via po-
larized cross sections as in (10). Also, considering that
numerically g2

L
∼= g2

R, the parameters εLL and εRR con-
tribute to the unpolarized cross section through ARR and
ALL with equal coefficients, so that, in general, only cor-
relations of the form |εLL + εRR| < const, and not finite
allowed regions, could be derived in the unpolarized case.
Since we have three unknown contact couplings, the three
spin combinations of (9) are sufficient to determine them.
In principle, one could have chosen alternative spin con-
figurations, including for instance dσ−−. Numerically, we
find that the configurations chosen in (9) show a slightly
better sensitivity to ΛLR.

To make contact to the experimental situation we take
P1 = 0.8 and P2 = 0.6, and impose a cut in the forward
and backward directions. Specifically, we consider the cut
angular range | cos θ| < 0.9 and divide it into nine equal-
size bins of width ∆z = 0.2 (z ≡ cos θ). We also introduce
the experimental efficiency, ε, for detecting the final e+e−
pair and ε = 99% is assumed.

We then define the three, directly measurable, event
rates integrated over each bin:

N++, N+−, N−+, (11)

and (αβ = ++, etc.):

Nbin
αβ =

1
3
Lint(e+e−) ε

∫
bin

(dσαβ/dz)dz. (12)

In (12), Lint =
∫ Ldt is the time-integrated luminosity

over one “running year” of 107 s, and is assumed to be
equally divided among the three combinations of electron
and positron beam polarizations defined in (9). Clearly,
the numerical results on the individual contact couplings
would be different from the ones obtained here in the case
where the luminosity at the future Linear Collider would
not be equally shared among the three configurations, and
should be recalculated according to the actual running
times. For example, from (10) one can easily see that less
running time to the combination (++) would mostly affect
the bounds on ΛLR and the same is true for the other
polarization combinations.

In Fig. 1, the bin-integrated angular distributions of
Nbin

++ and Nbin
+− in the SM at

√
s = 500 GeV, Lint =
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Fig. 1. Bin-integrated angular distributions of Nbin
++ (solid line)

and Nbin
+− (dashed line), (12), in the SM at

√
s = 500 GeV,

Lint(e+e−) = 50 fb−1, |P −| = 0.8 and |P+| = 0.6

50 fb−1, and longitudinal polarizations |P−| = 0.8 and
|P+| = 0.6, are presented as histograms. Here, the SM
cross sections have been evaluated by means of the ef-
fective Born approximation [17,18]. The typical forward
peak, dominated by the t-channel photon pole, dramat-
ically shows up, and determines a really large statistics
available in the region of small t. The cos θ distribution
for the remaining polarization configuration Nbin

−+ in (9) is
similar to Nbin

+− due to |gL| � |gR| in the SM, and would
be practically indistinguishable in Fig. 1. Therefore, we do
not represent it here.

The next step is to define the relative deviations of the
polarized cross sections from the SM predictions, due to
the contact interaction. In general, for such deviations, we
use the notation:

∆(O) =
O(SM + CI) − O(SM)

O(SM)
, (13)

where O = σR, σL andσLR,t. To get an illustration of the
effect of the contact interactions on the observables (10)
under consideration, we show in Fig. 2a,b,c the angular
distributions of the relative deviations of dσR and dσLR,t,
taking as examples the values of Lint and Λij indicated
in the caption. The SM predictions are evaluated in the
same effective Born approximation as in Fig. 1. The de-
viations ∆(O) are then compared to the expected sta-
tistical relative uncertainties, represented by the vertical
bars. Figure 2a,c show that dσR is sensitive to the con-
tact interaction εRR in the forward region, where the ratio
of the “signal” to the statistical uncertainty substantially
increases, while it is sensitive to εLR in the backward di-

rection. Also, it qualitatively indicates that, for the cho-
sen values of the c.m. energy

√
s and Lint, the reach on

ΛRR will be substantially larger than 30 TeV. Conversely,
Fig. 2b shows that the sensitivity of dσLR,t is almost in-
dependent on the chosen kinematical range in cos θ, lead-
ing to a really high sensitivity of this observable to εLR,
and to a corresponding reach on ΛLR potentially larger
than 50 TeV. The corresponding behavior of the statisti-
cal significances, defined as the ratio between the deviation
from the SM and the statistical uncertainty for each bin,
S(O) = ∆(O)/δO with δO the expected statistical rela-
tive uncertainty, are shown in Fig. 3a,b. One can notice
from (8) that the statistical significance S goes to zero in
the limit θ → 0. This is not evident from Fig. 3a,b due to
the limited kinematical region | cos θ| < 0.9 taken in our
analysis.

2.2 Møller scattering

With P−
1 and P−

2 the longitudinal polarization of the elec-
tron beams, the differential cross section of process (2) can
be written in the following form [19–21]3:

dσ(P−
1 , P−

2 )
d cos θ

=
(1 + P−

1 ) (1 + P−
2 )

4
dσRR

d cos θ

+
(1 − P−

1 ) (1 − P−
2 )

4
dσLL

d cos θ
(14)

+
1 − P−

1 P−
2

2

(
dσLR,t

d cos θ
+

dσLR,u

d cos θ

)
.

In (14):

dσRR

d cos θ
=

πα2

s

∣∣ARR
∣∣2, dσLL

d cos θ
=

πα2

s

∣∣ALL
∣∣2, (15)

dσLR,u

d cos θ
=

πα2

s

∣∣ALR,u

∣∣2, dσLR,t

d cos θ
=

πα2

s

∣∣ALR,t

∣∣2,
and

ARR =
s

t

[
1 +

t

u
+ g2

R

(
χZ(t) +

t

u
χZ(u)

)
+ 2

t

α
εRR

]
,

ALL =
s

t

[
1 +

t

u
+ g2

L

(
χZ(t) +

t

u
χZ(u)

)
+ 2

t

α
εLL

]
,

ALR,u =
t

u

[
1 + gR gL χZ(u) +

u

α
εLR

]
,

ALR,t =
u

t

[
1 + gR gL χZ(t) +

t

α
εLR

]
, (16)

where χZ(u) = u/(u − M2
Z). Notice that the amplitudes

Aij are now functions of t and u instead of t and s as in
the case of Bhabha scattering.

As for the previous process, with both beams polar-
ized the polarization of each electron beam can be changed

3 In the case of Møller scattering one can find for the cross
section results similar to Bhabha scattering, that can be ob-
tained by crossing symmetry except for the overall normaliza-
tion factor 1/2 related to identical particles
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Fig. 2a–c. The angular distributions of relative deviations
from the SM predictions: a ∆(σR) for ΛRR = 30 TeV (solid
line) and 50 TeV (dashed line); b ∆(σLR,t) for ΛLR = 50 TeV
(solid line) and 70 TeV (dashed line); c ∆(σR) for ΛLR =
30 TeV (solid line) and 50 TeV (dashed line). In a and b the
curves above (below) the horizontal line correspond to negative
(positive) interference between contact-interaction and SM am-
plitude, whereas the opposite occurs in c. The error bars show
the expected statistical error at Lint(e+e−) = 50 fb−1

on a pulse by pulse basis. This would allow the separate
measurement to be made of the polarized cross sections
for each of the three polarization configurations ++, −−
and +−, corresponding to the sets of beam polarizations
(P−

1 , P−
2 ) = (P1, P2), (−P1, −P2) and (P1, −P2), respec-

tively, with P1,2 > 0. From (14)

dσ++ =
(1 + P1)(1 + P2)

4
dσRR

+
(1 − P1)(1 − P2)

4
dσLL +

1 − P1P2

2
dσLR,

dσ−− =
(1 − P1)(1 − P2)

4
dσRR

+
(1 + P1)(1 + P2)

4
dσLL +

1 − P1P2

2
dσLR,

dσ+− =
(1 + P1)(1 − P2)

4
dσRR (17)

+
(1 − P1)(1 + P2)

4
dσLL +

1 + P1P2

2
dσLR.

To extract from the measured polarized cross sections the
values of dσRR, dσLL and dσLR, that carry the information
on individual CI couplings, one has to invert the system
of (17). The solution reads

dσRR =
(1 + P2)2

2P2(P1 + P2)
dσ++ +

(1 − P1)2

2P1(P1 + P2)
dσ−−
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Fig. 3. a Statistical significance S(σR) as a function of cos θ at ΛRR = 30 TeV (solid line) and 50 TeV (dashed line); b Statistical
significance S(σR) (dashed line) and S(σLR,t) (solid line) as a function of cos θ at ΛLR = 50 TeV. Here:

√
s = 500 GeV,

Lint(e+e−) = 50 fb−1, |P −| = 0.8 and |P+| = 0.6

− 1 − P1P2

2P1P2
dσ+−,

dσLL =
(1 − P2)2

2P2(P1 + P2)
dσ++ +

(1 + P1)2

2P1(P1 + P2)
dσ−−

− 1 − P1P2

2P1P2
dσ+−,

dσLR = − 1 − P 2
2

2P2(P1 + P2)
dσ++ − 1 − P 2

1

2P1(P1 + P2)
dσ−−

+
1 + P1P2

2P1P2
dσ+−. (18)

As one can see from (15) and (16), contrary to the case of
Bhabha scattering, each of the cross sections σRR, σLL and
σLR depend on an individual contact-interaction parame-
ter, so that full disentanglement of the various couplings
(hence the derivation of model-independent constraints)
is directly obtained by electron beams polarization in the
Møller process.

Similar to Sect. 2.1, see (11) and (12), we define mea-
surable event rates integrated over each bin in z = cos θ:

N++, N−−, N+−, (19)

and (αβ = ++, etc.):

Nbin
αβ =

1
3
Lint(e−e−) ε

∫
bin

(dσαβ/dz)dz. (20)

In (20), Lint is the time-integrated luminosity in the e−e−
mode of the Linear Collider, and is assumed to be equally
divided among the three combinations of electron beams

polarizations defined in (17). Figure 4 is the analogue
of Fig. 1 for Bhabha scattering and represents the bin-
integrated angular distributions of Nbin

++ and Nbin
+− in the

SM, calculated by means of the effective Born approxi-
mation, for the c.m. energy

√
s = 500 GeV. To account

for the lower luminosity in the e−e− mode due to anti-
pinching in the interaction region [6,22], we assume in the
example of Fig. 4 Lint(e−e−) � 1

3Lint(e+e−) as expected
for the NLC [5]. Also, as regards the longitudinal polar-
ization of electrons, we take the symmetric configuration
|P−

1 | = |P−
2 | = 0.8.

One should notice, in this case of Møller scattering, the
peaks in the forward and backward directions, dominated
by the t and u photon poles leading to high statistics in
those kinematical regions, and the dip at 90◦. The cos θ
distribution for Nbin

−− has similar features.

Relative deviations of σRR, σLL and σLR from the SM
model due to the contact interactions can be defined in
analogy to (13). In Fig. 5 we show the angular distribu-
tion of the deviations ∆(σRR) and ∆(σLR), for the values
of Lint(e−e−) and Λij indicated in the caption, and with
the SM predictions evaluated in the same effective Born
approximation used in Fig. 4. Such deviations are com-
pared to the expected statistical uncertainties represented
by the vertical bars. The indication of Fig. 5, the analogue
of Fig. 2 for Bhabha scattering, is that, in Møller scatter-
ing, the sensitivity of σRR to the related contact parameter
εRR is almost flat in cos θ leading to high sensitivity to εRR
(the same occurs for σLL and εLL). Conversely, maximal
sensitivity to εLR is obtained in the forward and back-
ward regions where the expected statistical uncertainties
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Fig. 4. Bin-integrated angular distributions of Nbin
++ (solid

line) and Nbin
+− (dashed line) in the SM at

√
s = 500 GeV,

Lint(e−e−) = Lint(e+e−)/3 with Lint(e+e−) = 50 fb−1 and
|P −

1 | = |P −
2 | = 0.8

become smaller. The corresponding behavior of the statis-
tical significance, defined as the ratio between deviations
and uncertainties for each bin, are shown in Fig. 6, the
analogue of Fig. 3.

We now proceed to the estimate of the constraints on
the contact-interaction couplings from the two processes.

3 Numerical analysis and constraints
on CI couplings

To assess the sensitivity of Bhabha and Møller scatter-
ing to the compositeness scale, we assume the data to be
well-described by the SM predictions (εij = 0), i.e., that
no deviation is observed within the foreseen experimental
accuracy, and perform a χ2 analysis of the cos θ angular
distribution. For each of the observable cross sections, the
χ2 distribution is defined as the sum over the above men-
tioned nine equal-size cos θ bins introduced in Sect. 2:

χ2(O) =
∑
bins

(
∆(O)bin

δObin

)2

=
∑
bins

[S(O)bin]2
, (21)

where O = σL, σR, σLR,t and σbin ≡ ∫
bin(dσ/dz)dz. In

(21), ∆(O) represents the relative deviation from the SM
prediction defined in (13), and δO is the expected exper-
imental relative uncertainty, that combines the statistical
and the systematic one.

In order to achieve comparable accuracy in experimen-
tal measurements and theoretical predictions, radiative

corrections to Bhabha and Møller scatterings have to be
taken into account [23]. In practice, initial state radiation
is by far the most relevant part of the QED modifications
[24]. The method that we shall follow to evaluate the ef-
fects of the QED radiation for large-angle Bhabha scat-
tering is the one that uses the so called structure function
approach [24,25] where soft and hard photon emission is
taken into account. As to Møller scattering, the QED cor-
rections to the polarized cross section will be evaluated
by means of the FORTRAN code MOLLERAD [26,27],
adapted to the present discussion, with mtop = 175 GeV
and mH = 120 GeV.

Concerning the numerical inputs and assumptions used
in the estimate of δO, to assess the role of statistics we
vary Lint(e+e−) from 50 to 500 fb−1. As for the system-
atic uncertainty, we take δLint/Lint = 0.5%, δε/ε = 0.5%
and, regarding the electron and positron degrees of polar-
ization, δP1/P1 = δP2/P2 = 0.5%.

As a criterion to constrain the values of the contact-
interaction parameters allowed by the non-observation of
the corresponding deviations, we impose χ2 < χ2

CL, where
the actual value of χ2

CL specifies the desired “confidence”
level. We take the values χ2

CL = 3.84 and 5.99 for 95% CL
for a one- and a two-parameter fit, respectively.

3.1 Bhabha process

We begin the presentation of the numerical results from
the consideration of σL and σR. Since these cross sec-
tions simultaneously depend on the pairs of independent
CI couplings (εLL, εLR) and (εRR, εLR) a two-parameter
analysis is needed in these cases. The 95% CL allowed
areas are represented by the elliptical contours around
εLL = εRR = εLR = 0, depicted in Fig. 7a,b. The maxi-
mum reachable values of ΛRR and ΛLL correspond to the
minimum of the lower branches of the curves in these fig-
ures.

Turning to εLR, the relevant cross section σLR,t de-
pends only on that parameter, see (7) and (8), so that
the corresponding constraints are determined from a one-
parameter fit (with the lower value of χ2

CL). The model-
independent, discovery reach expected at the Linear Col-
lider for the corresponding mass scale ΛLR is represented,
as a function of the integrated luminosity Lint, in Fig. 8. In
this figure, arrows indicate the planned luminosities col-
lected at TESLA [4] and NLC [5]. As expected, the highest
luminosity determines the strongest constraints on the CI
couplings4.

The 95% CL bounds on εLR can be reported in Fig. 7a,b
to narrow the constraints on εRR and εLL, respectively.
They are represented by the vertical lines there, so that
the final allowed regions, at the 95% CL, are the shaded
ones. Figure 8 dramatically shows the really high sensitiv-
ity of σLR,t, such that the discovery limits on ΛLR are the
highest, compared to the ΛRR and ΛLL case.

4 Such increase with luminosity is somewhat slower than ex-
pected from the scaling law Λ ∼ (sLint)1/4 [28], since with
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Fig. 5a,b. The angular distributions of relative deviations from SM predictions: a ∆(σRR) for ΛRR = 40 TeV (dashed line),
50 TeV (solid line) and 70 TeV (dotted line); b ∆(σLR) for ΛLR = 30 TeV (solid line) and 50 TeV (dashed line). The curves
above (below) the horizontal line correspond to negative (positive) interference between contact-interaction and SM amplitude.
The error bars show the expected statistical relevant uncertainty at Lint(e−e−) to be the same as in Fig. 4
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Fig. 6a,b. a Statistical significance S(σRR) as a function of cos θ at ΛRR = 40 TeV (dashed line), 50 TeV (solid line) and 70 TeV
(dotted line); b statistical significance S(σLR) as a function of cos θ at ΛLR = 30 TeV (solid line) and 50 TeV (dashed line).
Here, all inputs are the same as in Fig. 4

The crosses in Fig. 7a,b represent the model-dependent
constraints obtainable by taking only one non-zero param-

our input choice the effect of the systematic uncertainties can
compete with the statistical one

eter at a time, instead of two simultaneously non-zero and
independent as in the analysis presented above. The arms
of the crosses refer to an integrated luminosity of Lint =
50 fb−1. One can note from Fig. 7a,b that the “single-
parameter” constraints on the individual CI parameters
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Fig. 7a,b. Allowed areas (ellipses) at 95% CL on electron contact-interaction parameters in the planes (εLR, εRR) and (εLR, εLL),
obtained from σR a and σL b, respectively, at

√
s = 500 GeV, Lint(e+e−) = 50 fb−1, |P −| = 0.8 and |P+| = 0.6. Vertical dashed

curves indicate the allowed range for εLR obtained from σLR,t
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Fig. 8. Reach in Λ at 95% CL versus integrated luminos-
ity Lint(e+e−) obtained from the model-independent analysis
for e+ + e− → e+ + e− at Ec.m. = 0.5 TeV, |P −| = 0.8 and
|P+| = 0.6, ΛLR (solid line), ΛRR (dashed line), ΛLL (dotted
line). Arrows indicate the planned luminosities, Lint(e+e−), at
TESLA and NLC colliders

εRR and εLL are numerically more stringent, as compared
to the model-independent ones. Essentially, this is a re-

flection of the smaller critical value of χ2, χ2
crit = 3.84,

corresponding to 95% CL with a one-parameter fit.

3.2 Møller process

The procedure, and the criteria, to derive numerical con-
straints from the Møller process are quite similar, the out-
standing difference being that, in this case, each measur-
able cross section in (18) depends on a single contact-
interaction parameter, so that complete disentangling of
the ε is directly obtained and the smaller χ2

CL = 3.84, rel-
evant to one-parameter cases, applies. Certainly, this is an
advantage if one wants to perform a model-independent
analysis of electron contact interactions. Also, a substan-
tially higher longitudinal polarization should be attainable
for electron beams than for positron ones, for a given lu-
minosity. On the other side, there is the penalty of the
lower luminosity expected in the e−e− mode, depressing
the sensitivity. The lower bounds on the Λ are shown as
a function of the integrated luminosity in Fig. 9.

4 Concluding remarks

In the previous sections we have derived limits on the elec-
tron contact interactions by simultaneously considering
Bhabha scattering and Møller scattering at a Linear Col-
lider with longitudinally polarized beams, using a model-
independent analysis that allows one to simultaneously ac-
count for all independent couplings as non-vanishing free
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Fig. 9. Reach in Λ at 95% CL versus integrated luminosity
Lint(e−e−) obtained from the model-independent analysis for
e− + e− → e− + e− at Ec.m. = 0.5 TeV, |P −

1 | = |P −
2 | = 0.8,

ΛLR (solid line), ΛRR (dashed line), ΛLL (dotted line). Arrows
indicate the planned luminosities, Lint(e−e−), at TESLA and
NLC colliders

parameters. The analysis is based on the definition of mea-
surable polarized differential cross sections that allows one
to derive

(i) from Bhabha scattering, separate bounds on εLR and
in the planes (εLL, εLR) and (εRR, εLR);

(ii) from Møller scattering, completely individual bo-
unds on εLL, εRR and εLR.

Numerical results for the lower bounds on the corre-
sponding range in the relevant mass scales Λij , depend-
ing on the luminosity, are shown in Figs. 8 and 9, and
are summarized in Table 1 specifically for the potential
of TESLA and NLC to search for four-lepton contact in-
teractions. One may conclude from the results reported
in Table 1 that the two processes can be complementary
as far as the sensitivity to the individual couplings in a
model-independent data analysis is concerned: the sensi-
tivity of Bhabha scattering to ΛLR is dramatically higher,
while Møller scattering should be the one most sensitive
to ΛLL and ΛRR, provided the luminosity in this running
mode does not fall below the planned values.

All this shows the benefits of initial beam longitudi-
nal polarization, that allows one, by measuring suitable
combinations of polarized cross sections, to directly dis-
entangle the individual couplings. Indeed, as previously
observed, in general without polarization only correlations
among contact-interaction parameters, rather than finite
allowed regions, could be derived and, consequently, in the
unpolarized case only a one-parameter analysis, relating
to a specific model, can be performed.

Table 1. Reach in Λij at 95% CL, achievable at TESLA and
NLC and from the model-independent analysis performed for
e+e− → e+e− and e−e− → e−e−.

√
s = 0.5 TeV, |P −| = 0.8

and |P+| = 0.6

Process Lint ΛLL ΛRR ΛLR

fb−1 TeV TeV TeV

TESLA: 340 59 57 79
e+e− → e+e− NLC: 220 55 54 72

TESLA: 47 64 65 30
e−e− → e−e− NLC: 75 69 70 33
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